
Approved for public release; distribution unlimited. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A Knowledge Base For Knowledge-
Based Multiagent System 
Construction 

 
 

 
 

National Aerospace and Electronics Conference (NAECON) 
Dayton, OH, October 10-12, 2000. 

 
 

Marc J. Raphael & Scott A. DeLoach 
 
 
 
 
 
 
 

Department of Electrical & Computer Engineering 
Air Force Institute of Technology 

2950 P Street, Wright-Patterson AFB, OH 45433-7765



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



National Aerospace and Electronics Conference (NAECON) 
Dayton, OH, October 10-12, 2000. 

A KNOWLEDGE BASE FOR KNOWLEDGE-BASED MULTIAGENT 
SYSTEM CONSTRUCTION 

MARC J. RAPHAEL1 and SCOTT A. DELOACH2 

1 Space and Missile Center, SMC/XRDM, LAAFB, California 90245, USA, Marc.Raphael@losangeles.af.mil 
2 Air Force Institute of Technology, WPAFB, Ohio 45433, USA, Scott.DeLoach@afit.wpafb.af.mil 

Abstract.  The goal of the agentTool project at the Air Force Institute of Technology is to specify, design, and semi-
automatically generate multiagent systems.  The key to this ability is an underlying knowledge base that manages the 
knowledge used by the system designer in creating intelligent agent-based software applications.  This paper 
describes the Agent knowledge Interchange Mechanism (AIM), the agentTool knowledge base.  There are four main 
components to AIM: the knowledge parser, the Multiagent Markup Language, the AIM domain model, and the 
Agent-oriented Random-Access Meta-Structure (ARAMS).  AIM is implemented using a multiagent system 
architecture that permits multiple developers to share a single knowledge base thus directly supporting collaborative 
system design and knowledge reuse. 

Key Words: Agent, multiagent system, knowledge, software, artificial intelligence 

1. INTRODUCTION 

With the advent of the Internet, many researchers 
have been taking a closer look at distributed software 
systems.  Recently, a large share of this research has 
focused on intelligent distributed systems, which have 
come to be known as multiagent systems.  As a result, 
new development methodologies specifically 
designed for multiagent systems have been introduced 
[3] and several tools are now available for building 
multiagent systems [12].   

The goal of our research at the Air Force 
Institute of Technology (AFIT) is to define a 
complete multiagent system development 
methodology and an associated toolset to support its 
use.  Our methodology, Multiagent Systems 
Engineering (MaSE), provides a complete life cycle 
approach to developing multiagent systems from their 
initial requirements specification to the generation of 
code [1].  The MaSE methodology and its 
implementation within agentTool follow the seven 
steps shown in Figure 1.  At each step, the user uses 
the graphically based models listed to further 
elaborate and define the system under development.  
To evaluate and support MaSE, we developed the 
agentTool development environment, which provides 
automated support for developing the graphical 
models required by MaSE [2].  Unlike many previous 
efforts, we did not tie MaSE and agentTool to any 
one communication framework, architecture, or 
implementation language; we allow the user to 
develop truly heterogeneous multiagent systems.  To 

support distribution and reuse of the knowledge 
required to build systems in agentTool, we developed 
a knowledge management system called the Agent 
knowledge Interchange Mechanism (AIM).  AIM 
allows the agentTool user to save all or part of the 
current system analysis or design and reuse the 
analysis or design from previous systems as well. 

The remainder of the paper discusses the 
agentTool knowledge base, AIM.  Section 2 describes 
the four AIM components, while Section 3 provides 
an example of its use in agentTool.  Finally, Section 4 
presents conclusions based on our work to date and 
future areas of research. 

2. KNOWLEDGE INTERCHANGE 

The goal of AIM is to allow agentTool (and 
other tool) users to store and reuse the knowledge 
contained in the MaSE models in a concise, reusable, 
and adaptable form and do so in either a local or 
distributed mode.  This allows a user flexibility by 
providing either standalone access or the ability to 
work in collaborative network environment.  AIM 
also strives to provide rapid location and retrieval of 
stored elements while guarding against errors that 
might arise by having more than one agentTool 
instance attempting to read and write to a common 
knowledge entity.  AIM consists of four key 
elements: 1) an overarching multiagent system 
domain model, 2) a knowledge representation and 
interchange language called the Multiagent Markup 
Language (MAML), 3) a tool-specific MAML parser, 
and 4) a knowledge storage utility named the Agent-



 

2 

oriented Random-Access Meta-Structure (ARAMS).  
These elements are integrated via a multiagent system 
consisting of a Guardian agent and one or more 
Connection agents.  Since agentTool’s internal object 
model was readily available, it was the first tool 
integrated into AIM.  Figure 2 reflects generically 
how AIM elements and agentTool work together. 

Creating Agent
Classes

Require-
ments

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing
Goals

Refining Roles

Assembling
Agent Classes

System Design

Applying Use
Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

Analysis
D

esign

 
Figure 1.  MaSE Overview 

2.1.  AIM and Related Efforts 

AIM is unique in its approach to the storage and 
management of design knowledge for sharing and 
reuse.  Complimentary work, however, is extensive.  
For instance, research has looked at the knowledge 
required to design a multiagent system given a 
particular methodology [13].  Additionally, efforts are 
underway to standardize and model core functions of 
agent development tools to permit interoperability 
[6,10].  One of these efforts, led by the Foundation 
for Intelligent Physical Agents (FIPA), differs from 
AIM by focusing on how to develop applications with 
cooperating agents, rather than on facilitating 
cooperation between the development tools.  
However, the goal of the Object Management Group 
Agent Working Group (OMGAWG) is closer to ours 

as its focus is on developing a common agent domain 
model, a key element to enabling proprietary 
applications to work together.  Both AIM and 
OMGAWG focus on the interoperability between 
development tools and not just the agents those 
applications create.  However, while the OMGAWG 
has yet to produce tangible results, we have actually 
implemented a system with a means to represent, 
store, retrieve, and reuse agent domain knowledge.  

AIM
Domain
Model

Domain
Analysis &
Knowledge
Engineering

agentTool

Local
Domain
Model

RAMS*
Knowledge

Management
System

Agent

GuardianConnection

*RAMS and its
Agent Interface
constitute ARAMS

Agent MAML

 
Figure 2.  AIM – agentTool Environment 

2.2.  AIM Domain Model 

The heart of AIM is its domain model, which 
defines the elements used to analyze, design, and 
implement multiagent systems.  This domain model 
was developed using a top-down domain analysis 
effort augmented with an investigation into prior 
multiagent system research.  The intent of the domain 
model is to encompass enough of multiagent system 
domain space to provide solid common ground for 
multi-tool collaboration.  Our domain model includes 
both the objects used in designing multiagent systems 
as well as the relationships between those system 
objects.  Figure 3 shows a simplification of our first 
iteration of the AIM domain model in the Unified 
Modeling Language (UML) and how we capture the 
multiagent system domain objects and relationships. 

2.2.1 Domain Objects  

Theory: Collects and models conceptual 
knowledge, often formally.  One popular theory 



 

3 

is Dennett’s Intentional Systems Theory, which 
was adapted to agents by Cohen and Levesque 
collects [7].  The resulting intentional theory for 
agents models agents in terms of belief, desire, 
and intention concepts.  
Goal: An objective for the agent or multiagent system 
to achieve. 
Role: An intended pattern of behavior, 
responsibilities, and collaborations for an agent within 
an overall structure or system.  Roles contain 
generalized tasks and a set of resources. 
Communication: A simple model of an interaction 
between roles. 
Role Model: A collection of roles and patterned 
communications between roles [8]. 
Task: A method that constrains and defines how a 
goal is to be achieved. 
Resource: Something that a role accesses to aid or 
support the role in its responsibilities. 
Component: The fundamental functional module of an 
agent.  Components have methods and attributes. 
Architecture: An abstraction for using a set of 
components together in a particular way.  Although an 
agent always has an architecture, components 
themselves may also have architectures for organizing 
their sub-components.  
Communication Framework: A set of protocols, 
components, and mechanisms that permit relay of data 

and knowledge.  Java RMI and sockets are two 
common communication frameworks.  Framework 
specifications have close ties with framework 
implementations. 
Data Construct: Analogous to a resource for a role, 
but for an agent.  Data constructs are not necessarily 
part of an agent, though an agent may have access to 
them.  Components of an agent may utilize this access 
in order to function. 
Conversation: A state-transition table (or finite-state 
machine) defining interactions between agents. 

2.2.2 Domain Relationships 
Played-by: A Role is Played-by an agent.  
Alternatively, an agent may assume a Role. 
Achieves: A Task achieves one or more Goals 
Participates-in: An agent may participate in one or 
more Conversations in a given system design. 
Uses:  A Role may require the use of some Resource 
to fulfill its responsibilities. 
Interfaces: Components that interoperate must 
interface one another. 
Accesses: An architecture may require Access to some 
class of Data Construct 
Involves: A Role may involve the use of one or more 
Communications. 
Specifies:  A Conversation specifies a communication 
at a higher level of detail. 

Method

Attribu te

Method

Data Construct

Component
Interfaces

Utiliz es

Task

Summarizes

Resource

Def ines

Arch itectu re
Ac cesses

Role

Uses

Communication

Involves

Agent

Played-by

GoalAchieves

Role Model

Conversation

Partic ipates-in

Specifies

System Comm Frmwrk

Figure 3.  AIM Object Model 



 

4 

Utilizes: A component utilizes the content of a Data 
Construct to which it belongs or accesses. 
Defines:  A Data Construct defines a resource in the 
same way a Conversations specifies a communication. 

2.3.  Multiagent Markup Language 

Although UML can be used to model multiagent 
system knowledge graphically, it is not ideal for 
knowledge interchange.  What we need instead is a 
concise notation amenable to network transfer and 
automatic parsing and generation.  To achieve these 
goals, we took advantage of the eXtensible Markup 
Language’s (XML) extensibility and compact nature 
to define the Multiagent Markup Language (MAML).  
MAML is the actual representation and interchange 
language of AIM.  MAML document type definitions 
(DTDs) specify XML syntactic and semantic 
elements for each of the knowledge entities in the 
domain model (conversations, components, 
architectures, etc.).  DTDs allows any tool supporting 
XML 1.0 [9] to parse a correctly constructed MAML 
document into its own local object model, whether 
the parsed MAML document was created by hand or 
a MAML-enabled tool.   

Figure 4 shows the MAML description of a 

relatively simple conversation between two agents.  
The two sides of the conversation are shown in 
Figures 5 and 6 as designed and used within 
agentTool.  The agentTool interface uses the 
simplicity of the graphical form for users developing 
systems, but relies on the MAML representation for 
storage and transfer.  Syntax and semantics captured 
in the agent MAML DTDs permit representation in 
the form shown in Figure 4, which is far more 
compact that even zipped compression of the actual 
Java objects.   

2.4.  Knowledge Parser 

Any tool requiring the ability to store, retrieve, or 
exchange of multiagent system knowledge in AIM 
needs a MAML compliant parser.  The agentTool 
parser consists of a set of methods in each Java object 
class in the underlying agentTool object model.  
These methods are used to either create a MAML text 
string representation from an agentTool object model 
or instantiate an agentTool object model from an 
existing MAML description.  Individual MAML 
elements can be pulled-from or inserted-into any 
system being developed in agentTool.  This allows 
individual agents, conversations, agent components, 

 <conversation version="1.1"  name="SendRawIntell">  
 <description> Conversation used for data transfer </description> 
 <participant name="initiator">  
   <statetable owner="MissionControl">  
     <state name="StartState"> </state>  
     <state name="EndState"> </state>  
     <state name="wait" action=""/> </state>  
     <transition rMessage="" tMessage="tell(rawIntell)" guard=""   
                 cstate="StartState" nstate="wait">  
     <transition rMessage="ack" tMessage="" guard=""   
                 cstate="wait" nstate="EndState">  
     <transition rMessage=" failure()" tMessage="tell(rawIntell)"   
                 guard="" cstate="wait" nstate="wait">  
   </statetable>   
 </participant>   
 <participant name="responder">  
   <statetable owner="Intelligence">  
     <state name="StartState"> </state>  
     <state name="EndState"> </state>  
     <state name="wait" action=""/> </state>  
     <state name="validation" action="valid = validate(rawIntell)"/> </state>   
     <transition rMessage="tell(rawIntell)" tMessage=""   
                 guard="" cstate="StartState" n state="validation">  
     <transition rMessage="" tMessage="ack" guard="valid"   
                 cstate="validation" nstate="EndState"  
     <transition rMessage="" tMessage="failure()" guard="NOT valid"    
                 cstate="validation" nstate="wait">  
     <transition rMessage="tell(rawIntell)" tMessage="" guard=""   
                 cstate="wait" nstate="validation">  
   </statetable>   
 </participant>   
</conversation>   

Figure 4.  Sample MAML Document 



 

5 

etc. to be stored and reused independently as the need 
arises. 

 
Figure 5.  Example Initiator Conversation 

 
Figure 6.  Example Responder Conversation 

2.5.  RAMS 

When agentTool or some other AIM-enabled 
multiagent system either produces or requires 
multiagent system knowledge, it can proceed in one 
of three ways. 

1. It may store or retrieve a MAML 
document locally.   

2. It may access a centralized 
repository.  

3. It may communicate directly with 
another tool.   

The second option is the most useful since 
companion tools are likely to be busy or not running 
and local storage is not likely to contain collaborative 
knowledge.  In AIM, the central repository is called 

the Random-Access Meta-Store (RAMS).  RAMS 
allows us to organize knowledge into libraries, is 
persistent, and is generally quite responsive to library 
storage and retrieval requests.  Currently there are 
RAMS libraries for Conversations, Agents, 
Multiagent Systems, Communication Frameworks, 
Agent Components, Roles, and Agent Architectures.  
Each library is based on the same file structure, which 
in turn is based on the Java RandomAccessFile class.  
The file structure includes modifications suggested by 
Hamner, which include header and data storage 
sections [4].  The library header holds a set of key-
pointer pairs, where the key is a user-defined name 
for a stored item and the pointer points to the item’s 
location in data storage section.  If the library grows 
to large, a knowledge-base maintainer can partition it 
into two libraries or a set of volumes within the 
original library.  An example name for a RAMS 
library would be “Conversations”, while a possible 
RAMS volume in that library might be 
“RegistrationConversations”. 

2.6.  Guardian and Connection Agents 

To store MAML descriptions in a central 
repository, they must be sent to RAMS.  This is 
accomplished using a multiagent system framework.  
Each tool instance (e.g., agentTool) has its own 
Connection agent, which it calls to transfer data to or 
from RAMS.  The Connection agent guides the user 
through the storage process, asking for an object 
description and an identifying key.  The Connection 
agent then initiates a StoreObject conversation with a 
Guardian agent.  The Guardian agent resides local to 
the RAMS file structure and has exclusive access to 
it.  The Guardian agent has the responsibility to allow 
a MAML document to be saved only if it has a unique 
key.  If the key is not unique, the agent requests a 
different key from the Connection agent, which 
passes the request on to the user.  When the user 
wishes to retrieve an item for reuse, the local 
Connection agent initiates a ListObject conversation 
with the Guardian.  The Guardian returns a complete 
list of keys for the selected library and the Connection 
agent presents them to the user and waits for a choice.  
If the user is unsure which key to use, the user can 
read the item description that appears upon key 
selection.  When a key (description) is selected, the 
object is transferred and parsed into the tool’s internal 
data structure.  The Guardian is designed to handle 
multiple storage and retrieval requests, and to prevent 
errors such as the reading and writing simultaneously 
to a keyed library item.  The inclusion of a Guardian 
and Collection agents as the interface to RAMS 



 

6 

constitutes what we call Agent-oriented RAMS 
(ARAMS).  Figure 7 shows the ARAMS architecture.  
Other information on ARAMS libraries and agents is 
available [5].  

agentToolother tool

Connection
Agent

Store GUI

Connection
Agent

Load GUI

systems
library

roles
library

components
library

Libraries & Volumes

Agent
Development

Tools

Remote
Knowledge Base

Store ObjectList/Load Object

Guardian
Agent

 
Figure 7.  ARAMS Architecture 

3. EXAMPLE 

The AIM system described above operates 
smoothly and effectively in a distributed environment.  
The following describes how specific storage and 
retrieval operations between agentTool (or another 
MAML-parsing tool) and ARAMS might proceed.  In 
this example, a multiagent system consisting of two 
agents and one conversation has been designed.  
Figure 8 shows the state-diagram associated with the 
conversation Register.  The pull down menu with the 
Store Object option selected is also shown.  When 
chosen, this option calls the local Connection Agent 

into service, which will detect the choice and present 
a GUI for facilitating a storage conversation.  The 
Connection agent will also call the appropriate 
knowledge parser methods to generate and retrieve 
the selected object’s MAML representation. 

Figure 9 shows the storage interface with its key 
and description fields.  After the user enters the 
required data, the conversation is stored in the 
knowledge base, with the Connection agent 
establishing a remote connection to the Guardian 
agent.  The Guardian agent determines which library 
the object should be stored in, which, in this case, is 
the conversations library.  If the key already exists, 
the Guardian notifies the Connection agent who, in 
turn, prompts the user to enter a new key.  This cycle 
continues until the user enters a unique key.  

To reuse the Register conversation after it is 
stored in the knowledge base, another (or possibly the 
same) user performs a similar series of actions.  The 
user simply creates a graphical placeholder for a 
conversation in agentTool and chooses Load Object 
from the pull-down menu show in Figure 8.  Once 
again, agentTool signals the local Connection agent, 
which displays the interface shown in Figure 10.  The 
agent transparently contacts the Guardian, requests 
the appropriate library listing, and presents the listing 
to the user.  In Figure 10, the user has selected the 
Register conversation causing the corresponding 
description to appear on the right-hand side.  If this 
description is satisfactory, the user presses the use 
button and the MAML object is retrieved and parsed 
into the tool.  The conversation replaces the local 
tool’s internal representation overwriting the user’s 
placeholder on the GUI.   

Figure 8. agentTool User Interface 



 

7 

 
Figure 9.  Store Conversation 

 
Figure 10.  List/Load Conversation 

4. CONCLUSIONS 

The Agent knowledge Interchange Mechanism 
introduced in this paper provides a robust method for 
collaboration using diverse tools.  In additional to 
agentTool, we have also modified the AFIT Wide-
Spectrum Object Modeling Environment 
(AWSOME) to use AIM.  The goal of AWSOME is 
to generate code from general object-oriented domain 
models.  After creating a MAML compliant parser for 
AWSOME, we have demonstrated transforming 
MAML compliant multiagent system designs into 
AWSOME for code generation.  We are also 
considering separating the agentTool verification tool 
[11], which checks the robustness of an agent design 
in agentTool, from agentTool using MAML and AIM 
as an intermediary.  Once separated, AIM may be 
used to maintain interoperability between the two 
tools while allowing the overall system architecture to 
be modularized.   

While AIM has been successful to date, there are 
some interesting challenges left.  For one, the AIM 

domain model is likely to evolve as we consider more 
and more tools for possible inclusion in the suite.  
Similarly, RAMS has a set number of stored agent 
knowledge representations, which limits reuse by 
reducing the likelihood of encountering a pertinent 
item in storage.  However, as with the domain model, 
this challenge will resolve itself as agentTool and 
AWSOME are used more extensively. 

The distributed nature of AIM is also a possible 
drawback, particularly in the area of bandwidth 
allocation and efficiency.  Although we believe that 
AIM interchange may be slowed by competing 
network applications, we feel that AIM itself will not 
be a prime contributor because MAML allows for 
very efficient knowledge transfer.   

Another potential challenge of AIM is in 
MAML.  Although MAML is based on industry-
standard XML, which is incredibly flexible, newer 
technologies offer even more promise.  XML-
Schemas, for example, may replace DTDs and allow 
for the definition of data types and other useful 
elements not readily available in XML.  Luckily, 
XML is backwards compatible; scripts can be written 
to automatically translate XML code (MAML) to be 
compliant with the XML-Schema specification.  The 
eXtensible Styling Language (XSL) is one XML-
related language that can be used to create such 
scripts.  XSL can also be used to translate MAML 
into a number of forms, including graphical forms for 
display in a browser. 

The final challenge concerns the ontology of the 
AIM domain model relative to the AIM toolset.  
Although not mentioned in this paper, capturing 
diverse tools’ ontological differences is a widely 
known challenge in agent research. 

5. ACKNOWLEDGEMENTS 

The Air Force Office of Scientific Research 
(AFOSR) and the Dayton Area Graduate Studies 
Institute (DAGSI) supported this research.  The views 
expressed in this article are those of the authors and 
do not reflect the official policy or position of the 
United States Air Force, Department of Defense, or 
the US Government. 

6. REFERENCES 

[1] M.F. Wood and S.A. DeLoach, “An Overview of 
the Multiagent Systems Engineering Methodology.” 
in Proceedings of the First International Workshop 
on Agent-Oriented Engineering (MOSE).  Limerick 
Ireland, June 2000. 



 

8 

[2] S. A. DeLoach and M. Wood, “Developing 
Multiagent Systems with agentTool,” in Proceedings 
of The Seventh International Workshop on Agent 
Theories, Architectures, and Languages, Boston, 
Massachusetts, July 2000. 

[3] C. Iglesias, M. Garijo, and J. González, “A 
Survey of Agent-Oriented Methodologies,” in 
Intelligent Agents V. Agents Theories, Architectures, 
and Languages, Lecture Notes in Computer Science, 
vol. 1555, J. P. Müller, M. P. Singh, and A. S. Rao 
(Eds.), Springer-Verlag, 1998. 

[4] D. Hamner, “Using a RandomAccessFile to Build 
a Low-level Database,” JavaWorld, 1999.  
http://www.javaworld.com/javaworld/jw-01-1999/jw-
01-step_p.html 

[5] M. J. Raphael, “Knowledge Based Support for 
Design and Synthesis of Multiagent Systems.” MS 
Thesis AFIT/ENG/00M21. School of Engineering, 
Air Force Institute of Technology (AU), Wright-
Patterson AFB Ohio, USA, 2000. 

[6] FIPA “Architectural Principles Baseline,” 
Foundation for Intelligent Physical Agents FIPA Spec 
0-1999, January 1999. 

[7] M. Wooldridge, and N. Jennings, “Intelligent 
Agents: Theory and Practice,” Knowledge 
Engineering, 1995. 

[8] E. A. Kendall, “Agent Roles and Role Models: 
New Abstractions for Multiagent System Analysis 
and Design,” Proceedings of the International 
Workshop on Intelligent Agents in Information and 
Process Management, Bremen, Germany, September 
1998. 

[9] S. A. Teplyakovsky, “XML Viewer,” IBM 
Alphaworks, 1999. 

[10] OMG Agents Working Group. 
http://www.objs.com/isig/agents.html 

[11] T. H. Lacey and S. A. DeLoach, “Verification of 
Agent Behavioral Models.” in Proceedings of the 
International Conference on Artificial Intelligence, 
CSREA Press, Las Vegas, Nevada, July 2000. 

[12] AgentBuilder, “Agent Construction Tools”, vol. 
2000: AgentBuilder, 1998. 
http://www.agentbuilder.com/AgentTools/index.html 

[13] M. Wooldridge, N. Jennings, and D. Kinny, 
“The Gaia Methodology for Agent-Oriented Analysis 
and Design,” Journal of Autonomous Agents and 
Multi-Agent Systems.  vol. 3(3), 2000. 

7. AUTHOR BIOGRAPHIES 

Captain Raphael works for the Air Force Space and 
Missile Center, in Los Angeles California.  He is a 
leader in the application of modeling and simulation 
in the acquisition and analysis of future space 
systems.  He completed his Master’s Degree in 
Computer Engineering at the Air Force Institute of 
Technology in March 2000.  His Master’s thesis was 
on knowledge systems for use with MAS 
development.  Before AFIT, Captain Raphael served 
at the National Air Intelligence Center.  Capt Raphael 
earned his BS in Electrical and Computer 
Engineering from Brigham Young University in 
1995. 
 
Dr. DeLoach is an Assistant Professor of Computer 
Science and Engineering at the Air Force Institute of 
Technology (AFIT).  His research interests include 
design and synthesis of multiagent systems, 
knowledge-based software engineering, and formal 
specification acquisition.  Prior to AFIT, Dr. 
DeLoach was at the Air Force Research Laboratory 
from 1996 to 1998.  He has also been stationed at 
Headquarters Strategic Air Command and the 
Aeronautical Systems Center.  Dr. DeLoach received 
his BS in Computer Engineering from Iowa State 
University in 1982 and his MS and PhD in Computer 
Engineering from the AFIT in 1987 and 1996. 


